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Since the 1970s, much attention has been devoted to the male advantage in standardized mathematics tests in 
the United States. Although girls are found to perform equally well as boys in math classes, they are consistently 
outperformed on standardized math tests. This study compared the males and females in the United States, all 
15-year-olds, by their performance on the PISA 2003 mathematics assessment.  A multidimensional Rasch 
model was used for item calibration and ability estimation on the basis of four math domains: Space and Shape, 
Change and Relationships, Quantity, and Uncertainty. Results showed that the effect sizes of performance dif-
ferences are small, all below .20, but consistent, in favor of boys. Space and Shape displayed the largest gender 
gap, which supports the findings from many previous studies. Quantity showed the least amount of gender 
difference, which may be explained by the hypothesis that girls perform better on tasks that they are familiar 
with through classroom practice.



Introduction

Since the 1970s, much attention has been 
devoted to the male advantage in standardized 
mathematics tests in the United States. In their 
seminal volume on gender differences, Maccoby 
and Jacklin (1974) concluded that males generally 
score higher on mathematics tests than females 
and the average difference is about .5 (in standard 
deviation units) for high school students. Male 
advantage on the SAT-mathematics has remained 
more or less constant throughout the past three 
decades (Ben-Shakhar and Sinai, 1991; Feingold, 
1988; Gallagher and Kaufman, 2005). Males’ 
superior performance in mathematics also ap-
pears in NAEP, the largest national educational 
assessment. According to the 2005 NAEP report 
(NCES, 2005), 4th grade males outperformed fe-
males in the mathematics assessment from 1990 
to 2005, and the same finding holds for 8th grade, 
except in years 1992 and 1996. 

Gender differences in mathematics in favor 
of males tend to enlarge among highly selective 
groups (Benbow and Stanley, 1980, 1983; Hedges 
and Nowell, 1995). Mathematically talented 
students remained disproportionately males at 
the high end of the ability distribution (Becker 
and Hedges, 1984; Feingold, 1988; Rosenthal 
and Rubin, 1982). Based on 16 years of research 
on intellectually talented 12- and 13-year-old 
students, Benbow (1988) concluded that there 
are noticeable differences on the SAT-M in favor 
of males. 

A glimpse at some of the large-scale stan-
dardized international assessments also indicates 
a male advantage in mathematics assessment. 
Boys outperformed girls significantly in both 
2000 and 2003 PISA mathematics in the United 
States (OECD, 2000, 2004). Also, the TIMSS 
results revealed that 8th grade boys performed 
better than girls on mathematics assessment 
consecutively from 1995 to 2003 (TIMMS, 2000 
a and b, 2003). 

However, there have been some contro-
versies about the existence and magnitude of 
gender differences in math. The conclusion of 
established gender differences in mathematics 

by Maccoby and Jacklin (1974) was challenged 
by some later studies which reported that gender 
differences in mathematics have declined over 
the years. For the SAT-Mathematics test, the dif-
ference has shrunk from the usual 40 points (d = 
.39)1 to 33 points in 2005 (College Board, 2005). 
The ACT-Mathematics test has shown a similar 
pattern with a difference of 3.1 points in 1970 
decreasing to 1.2 points in 2001 (Langenfield, 
1997; U.S. Office of Education, 2001). In a review 
paper titled “Cognitive Gender Differences Are 
Disappearing”, Feingold (1988) concluded that 
from 1960 to 1983 the gender differences on the 
PSAT-Mathematical declined from .34 to .17 
(measured in standardized effect size d), a value 
he considered of trivial practical significance. 
Linn and Hyde (1989) conducted a meta-analysis 
study on gender differences in cognitive abilities 
and found that since 1974, gender differences in 
math ability have declined from .31 to .14 (mea-
sured in standardized effect size d). Furthermore, 
many studies reported that boys and girls gained 
equal grades in schools and sometimes girls per-
formed better than boys (Kimball, 1989; Xie and 
Shauman, 2003), and men and women get equal 
grades in college math classes that are matched 
for the difficulty of the classes (Bridgeman and 
Lewis, 1996).

The declining gender differences in math-
ematics performance have triggered some heated 
debate on whether the research on gender differ-
ences should continue and if so, which direction 
to follow and what emphasis to take. Some 
researchers argue that further research on gender 
differences will reinforce the stereotype impres-
sion and bring detrimental impact to females. 
Halpern and Ikier (2002) refute this allegation by 
raising the point that those who are against the 
research of gender differences implicitly believe 
that the research results will show that females are 
inferior to males. Gender gaps need to be studied 
before they can be closed. Especially so far as 
there is no solid evidence that gender differences 

1   Effect size d is computed as the difference between the 
female mean and the male mean, divided by the pooled within-
group standard deviation. Cohen (1988) describes an effect 
size of .2 as small, .5 as medium and .8 as high.
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have been eliminated, nor can we justify that the 
existing difference is indeed negligible. 

Small effect sizes in performance can pos-
sibly suggest large practical differences (Cole, 
1997). The gender gap in math test scores is likely 
to have some impact on females’ career aspira-
tions and occupational choice (Wigfield, Battle, 
Keller, and Eccles, 2002). Females comprise less 
than a third of all bachelor’s degree recipients in 
the physical and computer sciences, and less than 
a quarter of all graduate degree recipients in engi-
neering and mathematics, although they account 
for over half of the student body (National Sci-
ence Foundation, 2000). Females only comprise 
8% of the mathematics professors in the United 
States. Many of the male-dominant professions 
that require a higher level of mathematical abil-
ity belong to the prestigious and high-paying job 
categories. This brings some unwarranted divide 
in male/female socioeconomic status. There are 
a few underlying factors that might contribute to 
females’ decision to stay away from math related 
careers (1) the widely circulated belief, stereotype 
thinking that girls do not perform well in math 
(Steele, 1997), and the lower parental expectation 
of females’ math achievement (Eccles and Jacobs, 
1986) (2) the fact that boys get better scores on 
high stakes standardized math tests, and (3) in 
general girls’ lower confidence in learning math 
(Wigfield, Battle, Keller, and Eccles, 2002). It 
might be a chicken and egg issue as which factor 
comes first and causes the others. Halpern and 
Ikier (2002) advocate for a psychobiosocial model 
of cognitive gender differences, which recognizes 
the joint impact of psychological, biological, 
and social factors on the progress and Bandura’s 
(1977) development of cognitive abilities. Ac-
cording to Bandura (1977) self-efficacy theory, 
one’s past success or failure in executing specific 
tasks largely determines their efficacy in carrying 
out these tasks. If this is the case, improved math 
performance will be accompanied by enhanced 
efficacy for females to master mathematical un-
derstanding. Research also suggests that as girls 
get older, they tend to be less constrained by the 
self-limiting gender notion that females can only 

undertake certain jobs (Jackson and Tein, 1998; 
Sanberg, Ehrhardt, Melins, Ince, and Meyer-
Bahlburg, 1987). 

On the basis of the above discussion, there is 
a need to further clarify the relationship between 
math and gender on standardized tests in order to 
achieve gender equality in math learning. Ample 
evidence suggests that girls still underperform on 
standardized tests, and, standardized tests pres-
ent critical thresholds for student future success. 
Very often math test scores are used in important 
admission decisions and award selections. In the 
era of the No Child Left Behind Act, both school 
performance and student learning are largely 
determined by large-scale standardized tests. To 
carry out the investigations, it is important to 
keep in mind that mathematical ability is multi-
dimensional (De Lisi and McGillicuddy-De Lisi, 
2002), as are gender differences in mathematics. 
Previous research has not devoted enough effort 
to examining various types of mathematical do-
mains and processes. 

To examine gender differences on large-
scale standardized tests, the 2003 Programme 
for International Student Assessment (PISA) 
mathematics data were analyzed in this study. A 
multidimensional item response modeling was 
used to examine the four domains of the PISA 
mathematics assessment. Many of the previous 
efforts were thwarted by the fact that many stud-
ies do not go beyond reporting a mean gender 
difference in math test scores. The total score 
approach ignores the variability in the magnitude 
of gender differences across dimensions if mul-
tiple subdomains are measured in the math test. 
A potential consequence of this is that we fail 
to provide effective diagnostic information for 
classroom teachers about student strengths and 
weaknesses in a particular math field. 

This paper aims to serve two primary ob-
jectives (1) investigate the empirical evidence 
supporting the four sub-content domains using 
a four-dimensional model, and (2) investigate 
gender performance within and across the four 
math domains. 
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If differential gender performance is identi-
fied within math domains, we want to know how 
the differences occur across domains. Gender dif-
ferences are not homogenous across math content 
areas. Studies found that males tend to outperform 
females on tasks involving reasoning and problem 
solving ability, tasks that measure spatial skills 
and tasks that require multiple solution strategies 
(Burton and Lewis, 1996; Doolittle and Cleary, 
1987; Gallagher, 1998; O’Neil and McPeek, 
1993). Females have been found to score higher 
on items measuring computational skills, items 
that involve retrieving information from work-
ing memory, and items that involve an extensive 
amount of reading or explanation (Casey, Nuttall, 
Pezaris, and Benbow, 1995; Gierl, Bisanz, Bisanz, 
and Boughton, 2003; Halpern, 1997). 

Method

Instrument 

Data from the PISA 2003 mathematics as-
sessment were analyzed. There are 84 math items 
in the PISA mathematics test, measuring student 
ability in four math domains: Space and Shape, 
Change and Relationships, Quantity, and Uncer-
tainty. All of the following analyses were based 
on these four math domains. The math items are 
represented by five item types: short response, 
closed constructed-response, open constructed-
response, multiple-choice and complex multiple-
choice items. The item distribution is provided 
in Table 1. 

Compared to other curricula-dependent 
mathematics surveys, PISA aims at measuring the 
educational “yield” of 15-year-old students. The 

primary goal of PISA is to monitor educational 
progress and provide a basis for international 
comparison (OECD, 2004). The PISA math as-
sessment emphasizes student ability to make 
sound judgments, demonstrate evidence, and ap-
ply knowledge and skills in real-life situations. 

Participants 

Altogether 5456 students in the United States 
participated in the PISA 2003 math assessment, 
including 2740 boys (50.2%), 2715 girls (49.8%), 
and one student with missing gender value. The 
students are exclusively 15-year olds. PISA seeks 
to measure how well students at this age are pre-
pared to meet the challenges of the knowledge 
societies. Studies have found that boys and girls 
showed no measurable difference in math per-
formance during the elementary years (Byrnes, 
2005; Hyde, Fennema, and Lamon, 1990). Larger 
differences are more likely to be found in the 
later-developing stages of mathematical cognitive 
abilities (Geary, 1996). Around age 15, a small 
to moderate gender difference appears in math 
performance in favor in boys (Byrnes, 2005). 
Therefore, 15-year-olds are a suitable target 
population for this study. 

The accuracy of the PISA survey depends 
on the quality of its sampling procedure. Two-
stage stratified samples were used in the PISA 
study. The first stage consisted of sampling 
individual schools where 15-year-old students 
were present. Schools were sampled systemati-
cally with probabilities proportional to size, the 
measure of size being a function of the estimated 
number of 15-year-old students. A minimum of 
150 schools were selected from each country. 

Table 1
Distribution of PISA 2003 Math Items by Content Domain and Item Type
	 Content Domain (Number of Items)

Item Type	 Space/Shape	 Change/Relationship	 Quantity	 Uncertainty	 Total

Short Response	 2	 4	 13	 3	 22
Closed Cons. Response 	 6	 4	 2	 1	 13
Complex MC	 4	 2	 2	 3	 11
Multiple-Choice	 4	 1	 4	 8	 17
Open Cons.Res.	 4	 11	 1	 5	 21
Total	 20	 22	 22	 20	 84
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Replacement schools were also selected, in case 
a sampled school could not participate for some 
reason (OECD, 2004). The second stage of the 
sampling involved sampling students within 
selected schools. Once schools were selected, 
a list of each school’s 15-year-old students was 
documented. Then 35 students were selected with 
equal probability. The strict stratified probability 
sampling procedure ensures the generalizibility 
of the findings. The inferences apply to not only 
the students who participated in this survey, but 
also to the 15-year-old population who could have 
taken the test (OECD, 2004). 

MRCMLM

To examine the dimensionality of the PISA 
math assessment and make comparisons of 
gender differences across dimensions, a multi-
dimensional measurement model is needed. The 
multidimensional random coefficient multinomial 
logit model (MRCMLM; Adams, Wilson, and 
Wang, 1997) was selected for the item calibration 
and ability estimation in this study. The software 
program ConQuest (Wu, Adams, and Wilson, 
1998) was used.

MRCMLM is a generalized Rasch type item 
response model, which is a multidimensional 
extension of the random coefficient multidimen-
sional logit model (Adams and Wilson, 1996). 
Within the MRCMLM framework, many existing 
IRT models are shown to be its special cases, such 
as the simple logistic model (Rasch, 1960), the 
rating scale model (Andrich, 1978), the partial 
credit model (Masters, 1982), the ordered parti-
tion model (Wilson, 1992), the linear logistic 
test model (Fisher, 1983), the multi-facet model 
(Linacre, 1994), and the multidimensional ver-
sions of these models. Its flexibility comes from 
the use of a scoring function and a design matrix. 
The former allows users to specify individual 
item weights (not empirically estimated) in each 
dimension and the latter allows users to specify 
item parameters in a linear form. For example, 
assigning equal weight to all items in the scor-
ing function and specifying one item location 
parameter for the item property parameter in the 
design matrix leads to the simple Rasch model 

for dichotomous response data. The capability 
to accommodate specified item weights in its 
item response modeling introduces flexibility 
when priori weights are decided based on some 
theoretical or practical reasons.  

The MRCMLM is formulated as: 
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where Xnik = 1 if person n’s response to item i is 
in category k, or 0 otherwise (1≤ i ≤ I, 1≤ k ≤ Ki, 
1≤ n ≤ N, and Xni1 is fixed to zero as a reference 
category for model identification); qn is a d x 
1 proficiency (or ability) parameter vector of a 
person n (1 ≤ d (dimension) ≤ D); ′bik  is a 1 x d 
scoring vector for category k of item i; ξ is a p x 
1 item parameter vector; and ′aik  is a 1 x p vector 
to specify linear combination of p elements of ξ 
for each response category. 

ξ is a fixed unknown parameter vector while 
qn is a random parameter vector. The elements of 
qn are assumed to follow a multivariate normal 
(MVN) distribution:

qn ~ MVN(µ, ∑),	 (2)

where µ is a 1 x d mean vector and ∑ is a d x d 
variance-covariance matrix. The mean vector of µ 
and the variance-covariance matrix of ∑ are fixed 
unknown parameters. The parameter estimates of 
ξ , µ, and ∑ are obtained by maximizing the fol-
lowing marginal maximum likelihood (MML): 
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where P(X|qn) is Equation (1) and G (qn|µ, ∑) is 
the cumulative distribution function of Equation 
(2). For the person ability parameter qn, ConQuest 
produces expected a posterior (EAP) estimates, 
maximum likelihood estimate (MLE) and weight-
ed likelihood estimates (WLE). This study used 
EAP estimates for student ability estimation. 

A four-dimensional model was analyzed 
based on the four mathematics content domains 
(see Table 1). Because the test consisted of di-
chotomously and polytomously scored items, 
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the MRCMLM is adjusted to a four-dimensional 
Rasch model for the dichotomous items, and to a 
four-dimensional partial credit model for the poly-
tomous items. In this four-dimensional model, 
each item only loads on one dimension, which is 
referred to as a between-item multidimensional 
model2 (Wang, Wilson, and Adams, 1997).

Results 

ConQuest uses the MML method to estimate 
the item parameters and EAP methods were used 
to produce the student ability estimates. The 
joint prior distribution of student abilities was 
obtained during the MML item parameter estima-
tion process (Adams, Wilson, and Wang, 1997; 
DeMars, 2004). 

First, we present the evidence that supports 
the application of the four dimensional model, 
which in return supports the four-domain structure 
of the PISA math assessment. Second, we present 
the results from the gender difference analysis. 
Since multiple booklets were used in PISA 2003 
math assessment, there is a need to adjust the 
potential booklet impact on student performance. 
The booklet effects were analyzed and used to 
adjust to the analyses results (see Appendices A 
and B). 	

Comparing to the unidimensional model

Here the unidimensional Rasch model is 
nested in the four-dimensional model, meaning 
that by applying some constraints (i.e., constrain-
ing all the inter-dimensional correlation to 1.0) to 
the four-dimensional model the unidimensional 
model is obtained. The difference in deviance 
between the multidimensional model and the 
unidimensional model approximately follows a 
chi-square distribution and can be used to provide 
index of model fit. The difference in deviance 
statistics of these two models is 930.3 with 9 de-
grees of freedom, where the degrees of freedom 
are the difference in the number of parameters 
estimated in the unidimensional and multidi-
mensional model. The difference in deviance is 

2   The other multidimensional model is within-item multi-
dimensional model, where one item loads on more than one 
dimension (Wang, Wilson, and Adams, 1997). 

statistically significant at the a = .001 level. This 
provides statistical support for the use of a four-
dimensional model, along with the theoretical 
support on the basis of the assessment design for 
the four content topics. 

Wright Map

In the MRCMLM application, item param-
eters and student estimates were calibrated to be 
on the same logit metric, so that within a single 
dimension all model parameter estimates can be 
compared on the same scale. The Wright map is 
a visual representation of the relative relations 
between item and person estimates. It is ideal that 
the item difficulty distribution will cover the span 
of the student ability distribution, thus providing 
accurate measures of student proficiency over 
the whole scale. The information elicited from 
students will be maximized when the item dif-
ficulty level is close to the student ability level. 
A lack of items in a difficulty range will lead to 
large errors in ability estimation. In Figure 1, the 
math items cover the student ability distributions 
of the four dimensions quite well, except for the 
Quantity dimension. The ability distribution is 
more dispersed for the Change and Relationships, 
and it is more peaked for the Space and Shape and 
Uncertainty dimension. In either case, there are 
sufficient items along the continuum to provide 
accurate ability estimates across the whole range 
of students. For the Quantity dimension, even 
the more difficult items are relatively easy for 
the top students. That is related to the nature of 
the Quantity domain, most of the items involving 
basic calculation or symbolic representation. No 
higher-order thinking is required for this kind 
of items. 

Both male and female mean ability estimates 
vary across the four content topics (Table 2). Both 
genders obtained the highest estimate on Quantity 
items, followed by Change and Relationships, 
Uncertainty, and Space and Shape. The vari-
ance of student performance also varies across 
dimensions. The Change and Relationships di-
mension displayed the largest variance, followed 
by Quantity, Space and Shape, and Uncertainty 
dimensions. 
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Figure 1. Wright map for the four mathematics dimensions

Note. Each “X” represents about 107 cases.

Figure 1. Wright map for the four mathematics dimensions
Note: Each “X” represents about 107 cases. 

Table 2
Boys and Girls’ Performance within Each Math Content Domain
	 Males	 Females

Content Domain	 Mean	 SD	 Mean	 SD	 t	 Effect Size

Space and Shape	 –.22	 .35	 –.27	 .34	 5.35**	 .14
Change and Relationships	 .08	 .85	 .00	 .78	 3.62**	 .10
Quantity	 .39	 .54	 .37	 .37	 1.60	 .04
Uncertainty	 .01	 .16	 –.02	 .16	 .69	 .12
Overall 	 .06	 .47	 .01	 .45	 4.32**	 .11

Note: ** p < .01.

Effect size is indicated by Cohen’s d, as calculated by d mean mean
SD SD

= −
+

1 2

1
2

2
2

(Cohen, 1988).
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Correlation between dimensions

The correlation between dimensions reported 
from ConQuest ranges from 0.77 to 0.88 (see 
Table 3). Note that the correlation produced in the 
ConQuest analysis is not the raw correlation be-
tween student ability estimates. These correlations 
are disattenuated or corrected for error so they are 
relatively free of measurement noise stemming 
from various sources (Briggs and Wilson, 2003, 
Wang, et al., 1997; Wang, 1994). The Quantity 
dimension is highly correlated with the other three 
dimensions (all correlation coefficients were the 
same at .88). Quantity items deal with the recogni-
tion of numerical patterns, and the processing and 
understanding of numbers in a real-life situation. 
These competencies are fundamental skills to 
carry out and complete other math activities. A 
correct answer to items in the other three domains 
depends on quantity knowledge to some extent. 
The two dimensions that showed the lowest cor-
relation were the Space and Shape dimension with 
the Uncertainty dimension. Except for the fact 
that they both fall under the math umbrella, these 
two domains are loosely connected. For example, 
calculation of probability items does not usually 
involve mental rotation of objects or vice versa. 
On average, the correlations among the four di-
mensions are reasonably high, given the fact that 
they all measure student “math ability”.

Fit statistics

For each item parameter, ConQuest provides 
a weighted fit mean square (WFMS) statistic to 
indicate the fit between the items and the mea-
surement model used to calibrate the items. Fit 

statistics can detect the discrepancies between 
the modeled assumptions and the empirical data 
(Wright and Masters, 1982; Wu, Adams, and 
Wilson, 1997). WFMS can be expressed as 

y wni
n

N

ni
n

N
2

1 1= =
∑ ∑/

(see Appendix C for details), with yni being 
the score residual between observed score and 
expected score for person n on item i, and wni 
being the variance of the observed score for 
person n on item i. This index is weighted so 
that responses made by respondents whose abil-
ity is far above or below that item will have less 
influence on the item fit statistics (Wright and 
Masters, 1982). WFMS is expected to have a 
value of 1. The WFMS values between .75 and 
1.33 are considered acceptable by convention 
(Adams and Khoo, 1996). Items with fit index 
larger than 1 suggest more variability in the data 
than the model explained, and items with fit in-
dex less than 1 indicate less variability than the 
model expected. 

Figure 2 illustrates the WFMS value for each 
item by the four content topics. All of the items 
showed reasonably good fit with the model. A 
Space and Shape item and an Uncertainty item 
displayed relatively large WFMS values, 1.10 and 
1.13, respectively. Both items are among the most 
difficult items in the PISA math assessment. The 
large fit statistic could result from the fact that the 
items are so difficult that they failed to distinguish 
among students of different ability levels. There 
is more variability in the item responses than the 
model predicts. 

Gender comparisons: overall and  
by each dimension

Table 2 also shows the descriptive statistics 
for the two genders on overall performance as 
well as within each content domain. On average, 
boys scored higher than girls on the PISA 2003 
assessment with statistical significance. Boys 
also performed better across all of the four math 
domains. The gender performance difference 
was statistically significant on the Space and 
Shape dimension and the Change and Relation-

Table 3
Correlations/Covariance between Dimensions
	 Covariance/Correlation Matrix

	 Dimension	 1	 2	 3	 4
1 Space and Shape		  .49	 .33	 .13
2 Change and Relationships	 .85		  .71	 .31
3 Quantity	 .88	 .88		  .20
4 Uncertainty	 .77	 .87	 .88	

Note: Values below the diagonal are correlations and 
values above are covariances.
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ships dimension. An effect size of the difference 
was calculated for each domain using Cohen’s 
d (Cohen, 1969, 1988). All the effect sizes were 
below .20. However, a small effect size could be 
of important significance if it reflects a system-
atic difference (Cole, 1997a). The domain that 
displayed that largest effect size was the Space 
and Shape dimension (d = .14). It has been well 
documented that boys demonstrate superior spa-
tial ability (Casey, Nuttall, Pezaris, and Benbow, 
1995; Gierl, Bisanz, Bisanz, and Boughton, 2003; 
Halpern, 1997; Linn and Hyde, 1989). There is a 
great deal of controversy about the possible causes 
of these differences. Some researchers argue that 
the differences are the result of biological causes 
(Bock and Kolakowski, 1971; Kimura, 1992). 
Many others challenge the proposal of innate 
differences by providing evidence of noticed re-
lationships between spatial ability and gender-role 
beliefs. In fact, gender gap in spatial ability can be 
decreased through specific training (Baenninger 
and Newcombe, 1989; Peters, Chisholm, and 
Laeng, 1995; Quaiser-Pohl and Lehmann, 2002). 
The gender differences in spatial ability are not 
homogeneous across students in different majors. 
Larger gender differences have been identified 
among students majoring in arts, humanities and 
social sciences than those majoring in computa-
tional visualistics3 (Quaiser-Pohl and Lehmann, 

3   Computational visualistics is a new, trans-disciplinary 
area of scientific endeavor that explores how pictures are cre-
ated, stored, transmitted, and analyzed by computers as well as 
perceived, understood and processed by computer users.

2002). In current K-12 classrooms, no specific 
curriculum has been designed to promote student 
spatial ability. Based on the authors’ general 
observation (in eastern and western countries), 
boys tend to spend more time on space-related 
activities than girls in daily life. Boys are more 
likely to engage themselves in sports, car toys, and 
playing with spatial video games (Baenninger and 
Newcombe, 1989; Halpern and Ikier, 2002). The 
amount of exposure to space-related activities has 
a substantial impact on the quantity and quality of 
student spatial ability. Indirectly, greater experi-
ences may enhance math performance through 
increased familiarity with mathematical thinking 
and greater confidence (Kimball, 1989). In fact, 
females’ spatial ability has been proven to in-
crease through an appropriate amount of training 
(Baenninger and Newcombe, 1989; Newcombe, 
Mathason and Terlecki, 2002; Vasta, Knott, and 
Gaze, 1996). Baenninger and Newcombe (1989) 
designed a few spatial training studies along 
two dimensions: content (specific, general, and 
indirect) and duration (long, medium, and short). 
Their finding is that the training is most effective 
when the instructions are specific and when the 
duration is long. With lots of practice, females 
are able to perform as well as males on spatial 
tests (Baenninger and Newcombe, 1989). This 
finding refutes the explanation of biological sex 
differences in spatial ability. 

Quantity is the dimension that showed the 
least amount of gender differences in terms of 
effect size (d = 0.04), and the t-test is insignificant 
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for this sample. Quantity items involve relatively 
lower levels of mathematical complexity. Both 
males and females obtained highest ability esti-
mate on Quantity items (Table 2). Quantity items 
mainly consist of computational items. Girls have 
been found to demonstrate advantages on compu-
tational items since they are more cautious than 
boys in dealing with arithmetic operations (De 
Lisi and McGillicuddy-De Lisi, 2002; Linn and 
Hyde, 1989). The concept of numerical manipu-
lation is often introduced and practiced in math 
classes. According to the familiarity hypothesis 
raised by Kimball (1989), girls are motivated and 
confident to perform well on tasks that they feel 
familiar with. Thus, they get the same or even 
better grades than boys in math class but perform 
less well on standardized tests (Kimball, 1989). In 
addition, girls are found to rely on a rote approach 
and memorization when learning math (Fennema 
and Peterson, 1985; Grant, 1985), which in turn 
helps girls in solving computational items. 

Gender frequency at each ability estimate level

To examine gender differences in a thorough 
manner, we compared the number of males and 
females at each ability estimate level for overall 
performance and within each math domain (see 
Figures 3-7). Each figure includes a pair of dis-
tributions representing each gender. From Figure 
3 we can see that the males and females showed 
very little difference at the extreme ends, contrary 
to the previous findings that there are significantly 
more males at the top performing level (Becker 
and Hedges, 1984; Rosenthal and Rubin, 1982). 
However, there are consistently more females at 
the left side of the distribution, and more males at 
the right side, except at one estimate point (0.1). 
Overall, boys showed advantages in the PISA 
math performance. 

The distribution of ability estimates was quite 
unimodal for the Space and Shape dimension 
(see Figure 4). Clearly, there are more females at 
the left side of the distribution and more males 
at the right side, suggesting that there are more 
males belonging to the high performing groups. 
Among the four pairs of distributions representing 
four content domains, Space and Shape dimen-

sion is the one that showed the most obvious and 
consistent male advantage in mean estimates. 
This explains the largest effect size of gender 
differences on this dimension among the four 
sub domains. 

The distribution of the Change and Relation-
ships dimension is less unimodal (see Figure 5), 
with many peaks in the middle, which coincides 
with the results shown in the Wright map (Figure 
1). Males and females showed no difference in 
terms of numbers at the lower end of the distribu-
tion. There were clearly more females than males 
in the medium ability range. Males outnumbered 
females at the higher end of the distribution, the 
difference in frequency ranging from a few stu-
dents to about 20. The difference is more obvious 
in the middle than at the upper tail. 

Similar to the distribution of the Change and 
Relationships dimension, the Quantity dimension 
(see Figure 6) followed a less unimodal distribu-
tion. There are several peaks in the middle range 
of the ability continuum. The Quantity dimension 
showed small frequency differences between 
the two genders at several estimate points in the 
middle range of the distribution. The difference 
does not consistently favor one gender over the 
other for this dimension. There is no obvious 
difference at the two tails of the distribution, sug-
gesting that males and females performed equally 
at the low and high ability level. 

The distribution of the Uncertainty dimension 
followed a quite unimodal distribution (see Figure 
7). There were very small frequency discrepan-
cies at a few estimate points. There were more 
females belonging to some of the low performing 
groups and there were more males belonging to 
the middle performing groups. There was no dif-
ference at the high ability level. In general, the 
number of males and females was very close at all 
ability estimate levels on this dimension. 

Generally speaking, there is no striking dif-
ference between males and females at each abil-
ity estimate level, except that males consistently 
outperformed females on the Space and Shape 
dimension, and there are more males at the top of 
the Change and Relationships dimension. 
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Conclusions and Discussion

Gender differences on large-scale standard-
ized mathematics assessments have been a con-
cern to educators and policy makers in the United 
States for over three decades. On the SAT math-
ematics test, males outperformed females from 
1972 to 2005 and the difference has remained 
somewhat constant at around 40 points (College 
Board, 2005). The gender gap in math perfor-
mance in K-12 settings is likely to amplify the 
gender gap in advanced math education and math 
related careers in the United States. Many of the 
math related majors are disproportionately males 
and also the faculties in mathematics departments 
are dominantly males in the United States. Since 
math related professions happen to be relatively 
better paid jobs, females’ social economic status 
is disadvantaged by their lack of representation in 
these professions (Liu and Wilson, 2007).

It has long been identified that gender dif-
ferences in mathematics performance are not 
homogeneous across tasks requiring different 
mathematical skills. There are certain math items 
that display larger differences than others. Gal-
lagher (1998) found that males tend to perform 
better on items requiring spatial ability and girls 
tend to score higher on items involving calcula-
tions. It is crucial to identify the domains that 
display substantial gender differences in favor of 
each gender so that actions can be taken to narrow 
the gender gap. 

This study takes a multidimensional Rasch 
approach to evaluate the gender differences 
across four math domains of the PISA 2003 
mathematics assessment. The multidimensional 
Rasch model was shown to have better model fit 
than the undimensional Rasch model. The four 
domains are reasonably correlated to support 

6

0

50

100

150

200

250

-1.3 -1 -0.7 -0.4 -0.1 0.2 0.5 0.8 1.1 1.4 1.7

Ability Estimate

N
um

be
ro

fS
tu

de
nt

s

Females

Males

Figure 6. 2003 Quantity: Number of Boys and Girls at Each Ability EstimateFigure 6. 2003 Quantity: Number of Boys and Girls at Each Ability Estimate

Figure 7. 2003 Uncertainty: Number of Boys and Girls at Each Ability Estimate

7

0

100

200

300

400

500

600

700

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Ability Estimate

N
um

be
ro

fS
tu

de
nt

s

Females
Males

Figure 7. 2003 Uncertainty: Number of Boys and Girls at Each Ability Estimate



30	 Liu et al.

a four-dimensional model. On average, males 
outperformed females across all four content do-
mains. All the effect sizes were below .20, small 
but consistent. This supports the findings from 
the general literature that gender differences in 
math performance have been declined, but still 
exist (Cole, 1997b; Feingold, 1988). 

The magnitude of the difference varied across 
dimensions, with the Space and Shape domain 
showing the largest difference and the Quantity 
dimension showing the smallest. It has long been 
documented that males showed superior spatial 
ability (Casey, Nuttall, Pezaris, and Benbow, 
1995; Gierl, Bisanz, Bisanz, and Boughton, 2003; 
Halpern, 1997). The examination of the number 
of males and females at each ability estimate 
points revealed that there were consistently more 
females than males at the lower end of the ability 
distribution and there were more males at the up-
per end of the distribution for the Space and Shape 
dimension. The gender differences on the other 
three dimensions were less obvious or consistent 
than those on the Space and Shape dimension, 
except for Change and Relationships where 
there were more males at the top end. The results 
emphasized the importance of contextualized in-
vestigations of the math gender issue. Males and 
females not only obtained different scores, they 
also performed differently on various components 
of math tests (Harris and Carlton, 1993). 

A larger significance of this investigation lies 
in that it offers an example of examining gender 
differences by content area, to provide diagnostic 
information of student strengths and weaknesses 
within each domain. It is hoped that teachers can 
utilize the findings to revamp instruction and 
cater to the differential learning needs of boys 
and girls. 

For future research, it would be important 
to conduct a trend analysis with the PISA 2000 
data to see whether the patterns of gender differ-
ences remain unchanged between the years 2000 
and 2003 in the United States. If findings are 
consistent, if for example, the Space and Shape 
domain also showed the largest difference on the 
2000 mathematics assessment, it will deliver a 

clear message to policy makers that serious ac-
tions need to be taken to narrow the gender gap 
in spatial ability. Probably instructional materi-
als should be embedded in curriculum design to 
provide effective scaffoldings for girls to develop 
spatial ability. Similarly, actions need to be taken 
to improve boys’ performance in areas such as 
calculation where they showed weaknesses (Gal-
lagher, 1998; Linn and Hyde, 1989). Another 
interesting direction would be to examine the 
interaction between the math content measured 
and the effect of item format, possibly to identify 
the combination of domain and item type which 
may enlarge or reduce the gender gap. 

Furthermore, international comparisons are 
needed to explore the generalizability of patterns 
of gender differences. The ranking of the math 
performance of the U.S. students is about 27th 
among 42 participating countries in PISA 2003. 
Countries of higher and lower performance than 
the United States could be selected for the com-
parisons. It would be important to investigate 
how specific curriculum design, pedagogy and 
classroom environment contribute to smaller 
differences in some countries. The purpose is 
to reduce gender gap in math performance and 
foster the mathematical learning of both males 
and females. 
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Booklet Effect Correction 

The 2003 PISA assessment items were al-
located to 13 item clusters (seven mathematics 
clusters, and two clusters in each of the science, 
reading and problem solving skills 1, see Table 4), 
with each cluster representing 30 minutes of test 
time. The 13 clusters were organized into 13 test 
booklets, with four clusters for each booklet. The 
frequency of each booklet, namely the number 
of students responding to each booklet, is also 
included in Table 4. We can see that the thirteen 
booklets were evenly distributed among students. 
Since mathematics is the primary focus of the 
2003 PISA assessments, there are seven math 
clusters, which would take about three-and-a-half 
hours to complete.  

Due to the different location of domains and 
items within each booklet, it is expected that there 
might be booklet influence on student math ability 
estimate. That is, the particular order of items can 
affect student responses. The booklet effect was 
modeled at the booklet level. When estimating 
the four-dimensional model, the booklet effect 
parameter was modeled and estimated together 
with 4 different dimension abilities (EAP) and 

1   PISA 2003 measures four domains: reading, science, math 
and problem solving. 

Table 4 
Cluster rotation design used to form test booklets for PISA 2003
	 Booklet	 Frequency	 Clustera

	 1	 418	 M1	 M2	 M4	 R1
	 2	 425	 M2	 M3	 M5	 R2
	 3	 420	 M3	 M4	 M6	 PS1
	 4	 408	 M4	 M5	 M7	 PS2
	 5	 431	 M5	 M6	 S1	 M1
	 6	 427	 M6	 M7	 S2	 M2
	 7	 407	 M7	 S1	 R1	 M3
	 8	 418	 S1	 S2	 R2	 M4
	 9	 421	 S2	 R1	 PS1	 M5
	 10	 437	 R1	 R2	 PS2	 M6
	 11	 424	 R2	 PS1	 M1	 M7
	 12	 404	 PS1	 PS2	 M2	 S1
	 13	 416	 PS2	 M1	 M3	 S2

Note:  aM stands for mathematics, R stands for reading, S stands for science, and PS stands for problem-
solving. 

Appendix A

item parameters to eliminate the confounding of 
item difficulties and booklet effects. This book-
let effect adjustment was modeled in ConQuest 
by using the “regression” command statement, 
which conducts a latent regression of ability 
onto a dummy variable to indicate which booklet 
was taken by each student. The use of the latent 
regression for the booklet effect estimation was 
specified with ease by the following ConQuest 
command:

Regression blooklet,
where the “Regression” is a ConQuest command 
statement for latent regression. For more details of 
the use of the regression statement in the program 
ConQuest, see Wu, Adams, and Wilson (1998). 
Because there were 13 booklets, ConQuest pro-
duced 13 booklet estimates which represent the 
booklet difficulty. The booklet effect adjustment 
for student ability was made by adding the booklet 
parameter estimates from the latent regression 
to student ability estimate for students taking 
the corresponding booklet. This booklet effect 
adjusted EAP estimates were used for gender 
similarity and difference analyses.
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Booklet Estimates

The Wright map (Figure 1) also shows the 
booklet difficulty estimates. The booklet estimates 
can be interpreted in a similar way as the item dif-
ficulty estimates, with booklet 10 being the most 
difficult one and booklet 13 being the easiest. The 
span of the booklet estimates is about 0.5 logit. 
The importance of monitoring the booklet effect 
can be illustrated by comparing the booklet esti-
mate span to the student ability span within each 
dimension. For example, the range of the student 
ability is about 1.5 logits for the Uncertainty 
dimension. The booklet effect could take up to 
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1/3 of the true ability range. This will produce 
substantial difference in ability estimates between 
students who responded to, say, booklet 10 and 
booklet 13. To make corrections for this booklet 
effect, the booklet estimate was added to the stu-
dent estimate when responding to that booklet.  
The correlations between ability estimates with 
and without booklet correction are provided in 
Table 5. The Quantity dimension was the one least 
affected by the booklet effect and the Uncertainty 
dimension was the one most affected. To ensure 
accurate student ability estimate, we can see that 
there is a need to address the booklet effect. 

Table 5 
Correlation between ability estimates with and without booklet effect correction
	 Space/ Shape	 Change/Relationship	 Quantity	 Uncertainty

Correlation 	 .97	 .98	 .99	 .86
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