Biblio

Export 148 results:
Filters: Author is Mark Wilson  [Clear All Filters]
Book
 (4.08 MB)
 (210.75 KB)
Bertenthal, M. W., Wilson, M., & ,. (2005). Systems for state science assessment. National Academies Press.
 (473.17 KB)
Wilson, M., & Bertenthal, M. W.. (2005). Systems for State Science Assessment. Washington, D.C.: National Academy Press.
 (473.17 KB)
Bertenthal, M. W., Wilson, M., & ,. (2005). Systems for state science assessment. National Academies Press.
 (473.17 KB)
Book Chapter
Draney, K., & Wilson, M.. (2007). Application of the Saltus model to stagelike data: Some applications and current developments. In Multivariate and mixture distribution Rasch models (pp. 119–130). Springer.
 (1.12 MB)
Wilson, M., & Adams, R. J.. (1996). Evaluating progress with alternative assessments: A model for Chapter 1. In M. B. Kane (Ed.), Implementing performance assessment: Promise, problems and challenges. Hillsdale, NJ: Erlbaum.
Roberts, L., & Henke, R.. (1997). Mapping Middle School Students' Perceptions of the Relevance of Science. In M. Wilson & Engelhard, G. (Eds.), Objective Measurement: Theory into Practice. Volume 4) Norwood, NJ: Ablex.
Wilson, M., Bejar, I., Scalise, K., Templin, J., Wiliam, D., & Torres Irribarra, D.. (2012). Perspectives on Methodological Issues. In Assessment and Teaching of 21st Century Skills (pp. 67–141). Springer.
Wilson, M., Bejar, I., Scalise, K., Templin, J., Wiliam, D., & Torres Irribarra, D.. (2012). Perspectives on Methodological Issues. In Assessment and Teaching of 21st Century Skills (pp. 67–141). Springer.
 (1.46 MB)
Wilson, M. (2012). Responding To A Challenge That Learning Progressions Pose To Measurement Practice. In Learning progressions in science (pp. 317–343). Springer.
 (2.43 MB)
Diakow, R., Torres Irribarra, D., & Wilson, M.. (2013). Some Comments on Representing Construct Levels in Psychometric Models. In New Developments in Quantitative Psychology (pp. 319–334). Springer New York.
 (981.89 KB)
Wilson, M., & Draney, K.. (2013). A Strategy for the Assessment of Competencies in Higher Education. In Modeling and Measuring Competencies in Higher Education (pp. 61–80). Springer.
 (1.46 MB)
Lehrer, R., Kim, M., Ayers, E., & Wilson, M.. (In Press). Toward establishing a learning progression to support the development of statistical reasoning. In J. Confrey & Maloney, A. (Eds.), Learning over Time: Learning Trajectories in Mathematics Education. Charlotte, NC: Information Age Publishers.

Pages