Biblio

Export 211 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Harcourt Assessment,. (2009). Constructing One Scale to Describe Two Statewide Exams. Journal of applied measurement, 10, 170–184.
 (571.23 KB)
G
Galpern, A., & Moore, S.. (2006, April). Designing and Using an Embedded Assessment System to Track Student Progress. Presented at the Annual Meeting of the National Science Teachers Association, Anaheim, CA.
F
Fisher, Jr., W. P., Seeratan, K., Draney, K., Wilson, M., Murray, E., Saldarriaga, C., et al.. (2012, April 12). Predicting Mathematics Test Item Difficulties: Results of a Preliminary Study. Presented at the International Objective Measurement Workshop in Vancouver, BC.
D
 (138.66 KB) (191.91 KB)
 (813.59 KB)
Drartey, K., Wilson, M., Glück, J., & Spiel, C.. (2008). Mixture models in a developmental context. Advances in Latent Variable Mixture Models, 199.
 (222.14 KB)
Draney, K., & Peres, D.. (1998). Multidimensional modeling of complex science assessment data (No. BEAR Report Series). University of California, Berkeley.
Draney, K., Moore, S., & Wilson, M.. (2005). Theoretical issues in the Desired Results Developmental Profile. Presented at the

Annual meeting of the American Educational Research Association, Montreal, Canada.

.
Draney, K., & Wilson, M.. (1997, July). Mapping student progress with embedded assessments: The challenge of making evaluation meaningful. Presented at the National Evaluation Institute Workshop, Indianapolis, IN.
Draney, K., & Wilson, M.. (2007). Application of the Saltus model to stagelike data: Some applications and current developments. In Multivariate and mixture distribution Rasch models (pp. 119–130). Springer.
 (1.12 MB)
Draney, K., Galpern, A., & Wilson, M.. (2005, November). Designing & using an embedded assessment system to track student progress. Presented at the National Science Teachers Association conference, Chicago, IL.
 (448 KB)
Diakow, R., Torres Irribarra, D., & Wilson, M.. (2013). Some Comments on Representing Construct Levels in Psychometric Models. In New Developments in Quantitative Psychology (pp. 319–334). Springer New York.
 (981.89 KB)
 (269.02 KB)
 (417.22 KB)

Pages